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Under consideration is the turbulent motion of a compressible fluid

caused by the unsteady movement of a thin wing of finite span, moving

according to a given law (refs. I and 2).

For the solution of the boundary problems the method which we

developed earlier in connection with our investigation of plane parallel

unsteady movements of a fluid (ref. 3) is used.

The article gives the solution of the problem in quadratures for

all forms of unsteady movement of a wing, in the case when the basic

velocity of the wing's movement is supersonic, and when the end effect

or the influence of the whirl system spreading behind the wing is not

affecting the wing's surface.

_. We shall consider the movement of a thin, slightly bent wing of

finite span with a small angle of attack.

We shall assume that the basic movement of the wing is a gradual

rectilinear movement with a generally variable velocity taking place

within an unlimited volume of compressible fluid coming to rest at

infinity. Let us impose on the basic movement of the wing additional

small unsteady movements in the course of which the surface of the wing
can be deformed.

We shall use a right-handed rectilinear coordinate system of

Oxyz-aU_es, invariably linked to the space in which the wing's movement

is taking place. We aim the Ox-axis in the direction of the wing's move-

ment a_d we place the xOy-plane in such a way that the z-coordinates

of the points of the wing's surface are small. (See figs. i and 2.)

The law of the wing's basic movement will be considered to be

given in the form

x = F(t) (i. i)

*Translated from Izvestiya Akademii Nauk, 0tdelenie Tekhnicheskikh

Nauk SSSR (Moscow), no. 3, Mar. 1958, pp. 25-32.



where F is an arbitrary continuous function of time, and where the
x-coordinate, for purposes of definiteness, will be the coordinate of
somefixed point C on the leading edge of the wing.

The normal velocity componenton both sicles of the wing's surface
will be subject to the law

an = A (1.2)

where A is a point-time function on the wing's surface defined by

A = AO + A1 (A0 = -F'(t)6) (1.3)

The functions 6 (the angle of attack of the elements of the wing)

and A are given at every point of the wing's surface. These are small

arbitrary integrable functions of their arguments. The first summand

in the expression for A represents the basic movement of the wing;

the second represents additional unsteady mov(_ments.

We shall assume the flow of the fluid to be irrotational and to

take place in the absence of external forces. The velocity potential

of the perturbed flow of the fluid and its derivatives will be considered

as small magnitudes of the first order, and sI1all magnitudes of the

second order will be disregarded. Under thes_ assumptions, as it is

known, the velocity potential satisfies the wave equation, which, in

fixed coordinate axes, has the form

q_xx + _yy + _zz

i

a2 q_tt = 0 (1.4)

where a is the velocity of sound in an unperturbed medium.

We shall establish the boundary conditiolls satisfied by the func-

tion _ and by its derivatives. We will shift the boundary conditions

on the wing's surface parallel to the Oz-axis onto the projection Z

of the wing on the fixed xOy-plane, which is equivalent to ignoring

small magnitudes of the second order. Thus on the basis of the given

law (eq. 1.2)) for the normal velocity compon, mts of the points of the

wing's surface, we get the streamlining, or d_wnwash, condition*
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*NASA reviewer's note: The downwash, and hence the source strength,

is assumed to be known on the wing surface and in unperturbed areas;

when needed elsewhere, however, it must be determined by solutions to

integral equations. No new solutions are derived from the formal
treatment.
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_z = A(x,y,t) (i. 5)
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which must be fulfilled on both the upper and lower sides of _.

From the surface of the wing, in the direction opposite to its

movement, there descends a vortex surface, known as the vortex sheet,

on which the velocity potential, as on the wing's surface itself, is

subject to a break in continuity. The projection _-i of the vortex

sheet on the xOy-plane is a semistrip extending from the trailing edge
of the wing in the direction opposite to the Ox-sxis. On the whirl

surface the kinematic condition expressing the continuity of the normal

velocity component of the fluid's particle must be satisfied, and also

the dynamic condition expressing the continuity of pressure must be

satisfied. Since on the vortex surface the direction of the normal

deviates little from the direction of the Oz-axis, we will also shift

the boundary conditions parallel to the Oz-axis onto the projection of

the vortex surface on the xOy-plane, which again amounts to disregarding
small magnitudes of the second order.

From the continuity of pressure, it results that in the region ___'i
the derivative function

_t = 0 (1.6)

It follows from the same conditions that everywhere in the xOy-plane,

but outside the regions _ and _i' where the medium is perturbed, the

velocity potential is equal to zero

: 0 (1.7)

If the velocity of the wing's basic movement is supersonic, that

is, F'(t) > a, then the medium is perturbed only in that part of the

space which is restricted by Mach wave. Outside this wave, in the
xOy-plane, the condition

= 0 (1.8)

must also be satisfied. In addition to this, the Chaplypin-Zhukovski

principle must be observed on the trailing edge of the wing at every

moment. Thus, the boundary problem consists of finding a function

_(x,y,z,t) that satisfies equation (1.4), the boundary conditions

(1.5), (1.6), (1.7), (1.8), and the following conditions pertaining to
its derivatives:
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lim _x = lim _y = lim _z = 0 where
r_ r_ r_

r = _x2 + y2 + z2 (1.9)

It is sufficient to solve the problem for the upper half-space of

the wing's movement. The velocity potential for the lower half-space

will be found from the condition

_(x,y,-z,t) = -_(x,y,z,t) (i.io)

since the function _ is an odd function relative to the z-coordinate,

when the movement of the wing is rectilinear.

, We shall consider the solutions (ref. 5 chs. i and 3)

m(x,y, z,t) =
f(_,n,_)

_(x - _)2 _ k2(y _ n)2 _ k2_2

(2. l)
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i. T =t

of the equation

Ul(X - _) a
+

Ul 2 - a 2 u12 - a 2

'/(x - _)2 _ k2(y _ _)2 k2z 2

(2.2)

(Ul 2 - a2)Mlx x - a_lyy - a2Mlzz + Olt t + 2UlMlx t = 0 (2.3)

where f is an arbitrary function of its ar_uments. The magnitude u I

is an arbitrary parameter of equation (2.3). Formula (2. i) shows that

the variables _, q, and • satisfy the eqlation

u12 - a2) (t - T) 2 _ )2 z2 - 2ui(x _)(t - T) 0+ (x _)2 + (y _ _ + _ =

(2.4)

Equation (2.4) is the equation of the surface, which can be

obtained as the intersection of the charactezistic surface

- - - )2 (:, )2(U12 a2)(t T) 2 + (x _)2 + (y _ q + - _ - 2Ul(X - _)(t - T) = 0

(2.5)
of equation (2.3) with the hyperplane _ = O.



Weshall place at all points M(_,_) of the plane xOy sources with
potentials of the form (2.1). Becauseof the linearity of equation (2.3),
its solution is a function expressed by the formula
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_l(x,y,z,t ) = _f f(_,_,T)

- _ k2(y _ _ k2z2

d_ d_ (2.6)

By making the following change of variable:

! l(x )2 k2z2
= Y - kV - _ - cos @

we transform the integral (2.6), taking into consideration solu-

tions (2.2), into the form

(2.7)

i f y _(x _ cos @q_l(X' Y' z' t) k

t Ul(X - _) a 2 k2z 2 A_I
+ _x_( - _) - sin d@ d_

u12 - a2 u12 - a2 U
(2.8)

We note that in the area of integration S_ which represents, gener-

ally speaking, the entire xOy-plane, a bi-connected region S' can always

be singled out, so that the variables of integration vary between the

limits c' $ _ _ x - kz and x + kz $ _ _ c"; (y- k-l_(x - _)2. k2z 2)

< _ < y + k -1 _(x _)2 k2z 2 ,,: = - - - or 0 <: @ <= _, where c' and c

are constant magnitudes, satisfying the inequalities c' > x + Kz,

respectively. In the remaining part S_ - S' of the region S_, the limits

of integration will either not depend on z at all, or will depend on

z only in the combination k2z 2.

If we differentiate equation (2.8) with respect to the parameter

and consider the value of this derivative when z = 0, we will obtain

the relation (ref. 5):

Z,

f(x,y,t) - 1 _lz(X,y,O,t ) (2.9)2_
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Thus for any value of time t, formula (2.6) establishes the

dependence between the function q_l at an arbitrary point of the

xyz-space and the derivative _iz' normal t_ the xOy-plane.

In particular, in solution (2.6), if t_e parameter u I is assumed

to be equal to zero, and the notation .lq_l(_'Y'z't)lUl=O = _(x,y,z,t)

is introduced, we shall have the solution of equation (1.4) in the form

(refs. 5 and 6)

Pr mz ,n,0,t- a-I (x - _)2+ (y_ _ +

= i jj d_ d__(x,y,z,t)
2_ 2

s_ _(x- _)2+ (y_ n)2 + z

where the variables of integration vary between the limits

and -_$_ <+_.

(2.1o)

-_ = _ = +_o

_. We shall consider the space of the variables x, y, and t. _e

break up the xyt-space into the regions V, VI, and V2 (see fig. 3)- We

shall define each of these regions as in reference 4.

We shall take, on the surface of the wing, an arbitrary point N

defined by the coordinates Xln and Yln in a mobile coordinate system

OXlYlZl, which is invariably related to the moving wing, where

x I = x - F(t), Yl = )' zI = z

(See figs. i and 2.) Let the curve NN' represent the law of movement

x = F(t) + Xln, Y = Yln

of the point N (fig. 3). At every point of this curve the streamlining

condition is fulfilled. The aggregate of curves representing the laws

of movement of the whole set of points of the wing's surface forms a

three-dimensional region V. The region V _s bounded by the surface

2 The surface 2* is the locus of the curves representing the law

of movement of the wing's contour points.

Let the curve ACBD, which forms the wing's contour (fig. 2) in a

mobile coordinate system, be given by the equation
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Yl:  (Xl) (3.11

Then the equation of the surface _ will have the form

y = _[x- F(t)] = _'(x,t) (3.5)

In the region V the derivative _z is given according to the

streamlining condition (1.5).

The region V I is partly bounded by the surface _ , which is formed

by the curves representing the laws of movement of the points on the

trailing edge of the wing, the arc ABD of the wing's contour, and by
.

two planes which are tangent to the surface _. along the curves AA'

and BB'. The curves AA' and BB', respectively, represent the laws of

movement of the points A and B, that is, the extreme left and extreme

right points of the wing's contour (fig. 5). The tangent planes are

not represented in the diagram.

In the region VI, the boundary condition (1.6) is satisfied.

The region V2 is the remaining part of the xyt-space, confined in

the interior of the region V + V I. In the region V 2 the condition (1.7)

is satisfied.

In figure 2, the plane region _ represents the projection of the

wing on the x0y-plane, at some instant of time tI (fig. 3). The

region [i is the projection of the vortex sheet on the xOy-plane at the

same instant of time tI. The plane region _'i and, consequently, also

the region VI extend to infinity, provided the movement is of unlimited

duration. If the movement starts from rest, then these regions are
bounded.

Represented in figure 4 are the plane regions [' _' _', and _ ,
i 2

obtained from the intersection of the xOt-plane with the V-, VI- , V2-planes ,

respectively. The curve CC' represents the law of movement of the point C

of the wing's contour in the xOt-plane, and the curve DD' represents the

law of movement of the point D of the wing's contour. The equation of
the curve DD' is
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x = F(t) - Z

where Z is a chord of the center plane.

In the investigation of various bounda_j problem variants, an

important part is played by conics defined b:, equation (3.3):

_ )2 2 2(x _)2 + (y _ _ - a (t - T) : 0 (3.3)

This family of conics (3.3) can be obtained by intersecting the char-

acteristic surfaces of equation (1.4) with the hyperplane _ = 0 when

z = 0. The tangent of the half angle at the vertex of these conics is

equal to the velocity of sound, that is, the propagation velocity of

small perturbations in the compressible medil_. The branches of the

family of conics (3.3) corresponding to the values • > t will be called,

for brevity's sake, _-conics (fig. 5).

The bending surface of the family of _-_;onics with vertices on the

Zsurface is a boundary of the region in the xyt-space, corresponding

to the perturbed state of the medium in the xOy-plane of the wing's

movement.

The family of £-conics performs the sam,_ function as the family of

straight lines X I and X2, given in the const:_ction of solutions for

plane problems (ref. 3, P. 28) by the equati,)ns

+ aT = CI

- aT = C2

respectively.

The dotted lines in figure 4 represent she straight lines which

are the lines of intersection of the _-conic_ with the x0t-plane.

We shall apply solution (2.10) to the b)undary problem, and deter-

mine the derivative Mz from the boundary c)nditions of the problem,

given in the x_rt-space. We shall introduce in the integral (2.10) the

element dS of the surface of the hyperbolo[d defined by the equation

(x _)2 2- + (y - + z2 2, 2- a ,t - T) = 0 (3.4)

which is satisfied by the variables _,_ and

T = t - a-l_(x - _)2 + (y _ _)2 + z2

F
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under the sign of the function _z" By introducing the element
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dS = _G - FI dq d_

(E, G, and FI being the coefficients in the first main quadratic

form), we shall represent solution (2.10) in the form

q_(x,y, z,t) = a
2_

Cz _,q,O,t - a-I (x _)2 + (y _ q + z

fJ
S(x,y,z,t) _(i + a2)(x - _)2

dS

+ (i + a2)(y- _l) 2 + a2z 2

(3._)"

where we integrate over the surface S. Surface S is the surface of the

branch of the hyperboloid (3.4), extending to infinity in the direction

of decreasing values of time. Integration along the branch of the hyper-

boloid extending in the direction of increasing values of time has no

physical meaning.

To every aggregate of variables x, y, z_ and t there corresponds

a surface S with vertex at the point P(x,y,t - (z/a)), represented in

figure 3.

In those cases where the surface S intersects only the region V

and that part of the xyt-space which corresponds to the unperturbed

state of the medium in the x0y-plane, the derivative Cz is known every-

where on the surface. In order for formula (3.5) to correspond to the

solution of the formulated problem, the derivative _z must be taken

from the boundary conditions (1.5) and (1.8) without resorting to the

construction of integral equations.

In the general case when the set of variables x, y, z, and t is

arbitrary, the surface S intersects the regions V, VI, and V2, and con-

sequently, the derivative Tz turns out to be unknown on a part of
surface S. In order for formula (3-5) to correspond to the solution of

the formulated problem, the unknown derivative _z must be found from

the integral equations constructed on the basis of the boundary condi-

tions (1.6) and (1.7).

It is convenient in the actual computation of the quadratures and

in the construction of the integral equations to pass from the surface

integral (5.5) to a double integral with a plane area of integration.

*NASA reviewer's note: Equation (3.5) and, consequently, the

expression for dS on page ii, as well as equation (3.6), appear to

be incorrectly given.
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The region SI is a part of the x0t-plane, which is bounded on the

right by the hyperbola a2(t - T)2 - (x - _)2 _ z2 = 0 (see fig. 4).
If condition (3.9) holds, then the left boundary of the region SI is
the curve which is the projection on the xOt-_lane of the line of inter-

section of the surface _ with the surface of the hyperboloid S, in

that part where the current coordinate _ _ y. Analogously the region
S2 is determined as that region in the xOt-plane which corresponds to
that part of the surface of the hyperboloid S where _ > y.

If in formula (3.11), the derivative _z is considered a function
of two variables _ and T, we shall get a formula (ref. 3,
formula (i. i0)) for the determination of the velocity potential in the
case whenthe wing is of infinite span.

In particular, the curve forming the wing's contour can consist of
segmentsof smooth curves; for example, it can be piecewise smooth.

In particular, the curve which describes the law of the wing's
movementcan be given not by one equation x = F(t), but can consist of
segmentsof smooth curves given by variousequations. The main velocity
of the wing's movementcan vary stepwise; tha± is, the derivative F'
can have discontinuities of the first type, which correspond to the
angular points on the curves describing the laws of movementof the wing's
points. The envelope of the _-conics with vertices at the angular points
corresponding to the sameinstant of time divides the xyt-space into
regions having various analytic modesof solution of the problem. The
envelope of the _-conics with vertices at the points on the curves which
represent the laws of movementof angular points, or the points of junc-
tion of the wing's contour, divides the xyt-s_ace into regions having
various analytic solutions of the problem.

In particular, in the process of the win@'s movement,the charac-
ter of the additional unsteady movementsof the wing can vary in such
a way that the points of the wing's surface c_n be included as separate
degrees of freedom in the additional movements; steady movementsmay
alternate with unsteady ones, etc. In all th_se cases, from the point
of view of the form of the given function A(_,y,t) the region V is
divided by the given surfaces into a series o_ regions.

For instance, let the wing moveaccordin_ to the law x = F(t)
and let there be no additional movements_tha_ is, on the wing's surface
the derivative

F
5
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_z = F'(t)_(x,y,t) =
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We shall assume that at the instant of time tO all points of the wing's

surface begin to effect harmonic fluctuations of the wing. Starting

from the instant of time to, on the wing's surface

_z = -F'(t)_(x,y,t) + ReAl(x,y,t)ex p i_t = A

F
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The plane region A0, DO, BO, CO is obtained as the result of the

intersection of the region V with the plane T = tO which divides the

region V into two parts, namely, when

and when

T < to, qDz = A

T > to, qDz = A

Let the wing move according to the law x = F(t). We will assume

that starting from the instant of time to, the points of the wing's
surface are progressively included in the additional fluctuating move-

ments with the relative velocity v(t) directed along the chord of the

wing in the direction of its movement. The surface given by the equation

J0T[ ]= F'(T) + V(T) dT + constant = f0(T)

also divides the region V _nto two parts. One part is to the left of

this surface,_ where _z = A, the other is to the right of this surface

where _z = _ (fig. 7).

The curve AI, DO, BI, CI is obtained by intersecting the surface

_* with the surface given by the equation _ = f0(T).

The results also retain force when in the process of the wing's

movement the area of the carrier surface changes to a finite magnitude_

the given boundary _* of the region Vwhich is reflected in the form of

(ref. 3, P. 35). This may be the case in the operation of some form of

mechanization of the wing. In the process of the actual computation

of quadratures in accordance with formula (3.5), the region of integra-

tion S must be split into component parts, depending on the form of

A

Y

I
0
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the given derivative _z in the region V_ and depending on the form of

_*_ whose separate parts can be g_ven by various equations.the surface

Translated by Consultants Custom Translations, Inc.,
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F-_ NASA - Langley Field, Va.




